

EPRI

Challenges Associated with Implementing New Technologies

Marc H. Tannenbaum Technical Executive

Session 5 OECD NEA CNRA VICWG Workshop on Supply Chain Management Paris, France November 6, 2018

"Any sufficiently advanced technology is indistinguishable from magic."

Sir Arthur Charles Clarke, "Prophet of the Space Age" Co-writer of screenplay for 2001: A Space Odyssey

When is new technology distinguishable from magic?

Innovative Reactor Technology / Designs

Can new design result in the need to re-shape the certain approaches to adequate assurance of safety?

- No AC or DC power required for safe shutdown
- Safety without reliance on safetyrelated electrical power
- Reduced to no need for current types of environmental qualification
- No LOCA line break accidents
- No safety system vulnerability to cyber security attacks

- Existing guidance, parameters and regulations
- Existing expectations
- Comfort with past practices
- Possible elimination of need to address some vulnerabilities and/or begin to address others

Smart (Advanced) Manufacturing

- Advanced manufacturing and digital technologies combined to produce customized products faster, more accurately, and less expensively
 - Digital process controls and highly accurate measurement technologies
- Powder Metallurgy Hot Isostatic Processing (PMHIP)
- Additive Manufacturing with Metals (3D) / ASTM F42 Committee
 - Powder bed (laser, fusion, electron beam melting)
 - Sheet lamination
 - Directed energy deposition
 - Binder jetting

Smart (Advanced) Manufacturing

- Additive manufacturing with thermoplastics
 - Stereolithography (SLA) Laser polymerizes a resin
 - Selective Laser Sintering (SLS) Laser selectively fuses materials in a granular bed
 - Fused Deposition Modeling (FDM) Polymer is heated and extruded through a nozzle
- Instead of building "to meet" a design, smart manufacturing technologies can build "from" a design
 - Certain aspects of conformance with design may be inherent in the processes themselves

Additive Manufacturing Supply Chain

- Spares may not be manufactured concurrent with original product
 - No need to keep replacements in inventory
 - Aging and obsolete design information are made available for customer use
- "Replacement Item Centers"
 - Access available OEM "files"
 - Prototype, copy, and print replacement items

Additive Manufacturing Supply Chain

Spare & Replacement *Item Data*

Digital Equipment

- Adopting digital is challenging for nuclear, even though:
- Relied upon in other mission-critical industries
 - Accuracy and repeatability of manufacturing processes far exceeds that of other items
 - Certification processes such as safety integrity level (SIL) provide adequate confidence in the ability of digital devices to perform their design functions
- Do methods for obtaining objective evidence of quality need to be revisited / reimagined?
 - Use of SIL certified devices in designs for nuclear applications could facilitate adoption of digital and provide objective evidence of quality and reliability

Quality Assurance Techniques

- 10CFR Appendix B and similar regulations are incredibly well written

 Level of detail allows for significant flexibility and innovation
- Nuclear norms such as verbatim compliance, effective time-tested methods and heavy reliance on existing documented processes and procedures might inadvertently impede innovating quality assurance tools
- Many current approaches to nuclear quality are based upon manufacturing methods and technology from the 1970's
- Could QA techniques and tools used by other industries be adapted for use in nuclear . . .
 - or could nuclear adapt enough to accept their use?

Can the "QA Toolbox" be modernized?"

OEM's structured

ELECTRIC POWER RESEARCH INSTITUTE

The Commission's mandate is to provide *"reasonable assurance of adequate"* protection, not absolute assurance of perfect protection. . . When they change the law to require absolute assurance of perfect protection, there won't be a lot of nuclear reactors in this country. Also, there won't be a lot of cars or McDonalds."

NRC Commissioner Edward McGaffigan, Jr. The longest-serving NRC Commissioner

Together...Shaping the Future of Electricity

